

Welcome to astro3D’s documentation!

	Utilities

	astro3D package

Utilities

This directory contains a number of useful tools and utilities for handling the data from the
ASTRO3D Genesis simulations. We have provided a number of example scripts to
run these tools in the run_scripts directory.

adjust_spec

This utility adjusts the data specification of the default
VELOCIraptor``+``Wherewolf trees to match the required specification of the
LHaloTree strucutre. See LHaloTreeReader [https://github.com/manodeep/LHaloTreeReader] for an overview of the LHalo
tree structure.

forest_sorter

This utility takes input HDF5 merger trees that have not been saved in any specific order and sorts
them on a number of fields; usually an at least an ID field and a mass field. The user can specify
on which fields the sorting should occur. In the default case, the trees are sorted first on the
ForestID, then the hostHaloID and finally in descending order of 200mean mass of the halo.
This results in halos that are sorted in ascending order according to their ForestID, then within
each Forest, all halos within a single FoF group are grouped and finally within each
FoF-group, the most massive halo is sorted first.

Tests

First please run the basic tests on the default test data provided by invoking pytest. If this
default test does not pass, please email jseiler@swin.edu.au

Included in the main function of tests/forest_sorter_test.py is an example of
running tests with customized settings. Of particular note is the gen_data
variable. If this is set to 1, a small set of sorted trees will be generated
from the specified unsorted HDF5 trees. The number of halos tested on is
handled by the NHalos_test variable.

If you wish to test your fully sorted trees after running forest_sorter(),
set gen_data=0, fname_in to the path of the original unsorted trees and
fname_out to the path of the sorted trees.

If the default test passes but your specific test fails please ensure that your data file is not
corrupt. Importantly, check that the snapshot keys are named appropriately. We require the
snapshot fields to include the word snap (case insensitive) and assume that the snapshot number
corresponding to the snapshot key is included as a single cluster towards the end of the key;
snap53_04 should correspond to snapshot number 04 for example.

If the snapshot fields are named correctly and your data can be otherwise read in via `h5py`, please
email jseiler@swin.edu.au

convert_indices

This utility takes the sorted HDF5 trees from forest_sorter and adjusts the
halo IDs to match the requirements of LHalo trees. LHalo trees requires that
these IDs are tree local and are the indices of the halos (rather than unique
temporal IDs).

The resulting LHalo compatible trees are saved as a HDF5 file with all other
fields identical to the input trees.

treefrog_to_lhalo

This function takes trees with the LHalo corrected indices (from
convert_indices()) and writes LHalo tree format. Under this format, the
tree pointers used to walk the tree are tree local. See LHaloTreeReader [https://github.com/manodeep/LHaloTreeReader] for an overview of the LHalo
tree style pointers.

The output format for this function can be either binary (write_binary_flag
== 1), HDF5 (write_binary_flag == 0) or both (write_binary_flag ==
2).

The binary files will have the following data format:

	32-bit integer: NTrees, describing the number of trees in the file,

	32-bit integer: TotNHalos, describing the total number of halos within the
file,

	NTrees 32-bit integers: TreeNHalos, describing the number of halos within each
tree.

Following this header is TotNHalos halo entries with data format:

	Descendant, 32-bit integer,

	FirstProgenitor, 32-bit integer,

	NextProgenitor, 32-bit integer,

	FirstHaloInFOFgroup, 32-bit integer,

	NextHaloInFOFgroup, 32-bit integer,

	Len, 32-bit integer,

	M_Mean200, 32-bit float,

	Mvir, 32-bit float,

	M_TopHat, 32-bit float,

	Posx, 32-bit float,

	Posy, 32-bit float,

	Posz, 32-bit float,

	Velx, 32-bit float,

	Vely, 32-bit float,

	Velz, 32-bit float,

	VelDisp, 32-bit float,

	Vmax, 32-bit float,

	Spinx, 32-bit float,

	Spiny, 32-bit float,

	Spinz, 32-bit float,

	MostBoundID, 64-bit integer,

	SnapNum, 32-bit integer,

	Filenr, 32-bit integer,

	SubHaloIndex, 32-bit integer,

	SubHalfMass, 32-bit integer.

The function is MPI compatible and the final number of files written
is equivalent to the number of processors used to call the function. These
files are load balanced such that each one will have a similar number of halos
(but not necessarily number of trees). For example,

$ mpirun -np 4 python run_scripts/run_treefrog_to_lhalo.py

Would generate 4 LHalo tree binary files.

astro3D package

Subpackages

	astro3D.genesis package
	Subpackages
	astro3D.genesis.utils package
	Submodules

	astro3D.genesis.utils.adjust_spec module

	astro3D.genesis.utils.common module

	astro3D.genesis.utils.convert_indices module

	astro3D.genesis.utils.forest_sorter module

	astro3D.genesis.utils.treefrog_to_lhalo module

astro3D.genesis package

Subpackages

	astro3D.genesis.utils package
	Submodules

	astro3D.genesis.utils.adjust_spec module

	astro3D.genesis.utils.common module

	astro3D.genesis.utils.convert_indices module

	astro3D.genesis.utils.forest_sorter module

	astro3D.genesis.utils.treefrog_to_lhalo module

astro3D.genesis.utils package

Submodules

astro3D.genesis.utils.adjust_spec module

Authors: Jacob Seiler, Manodeep Sinha

	
astro3D.genesis.utils.adjust_spec.adjust_spec(fname_in, fname_out, haloID_field='ID', FirstHaloInFOFgroup_field='hostHaloID', index_mult_factor=1000000000000)

	Adjusts some fields of the VELOCIraptor trees to match the LHaloTree Specs.

	Currently calls the following functions:

	
	astro3D.genesis.utils.`adjust_hostHaloID

	Parameters

	
	fname_in, fname_out (String) – Path to the input HDF5 trees and path to where the updated trees will be
saved.

	haloID_field (String, optional) – Field name within the HDF5 file that corresponds to the unique halo ID.

	FirstHaloInFOFgroup_field (String, optional) – Field name within the HDF5 file that corresponds to
FirstHaloInFOFgroup in the LHaloTree structure.

	index_mult_factor (Integer, optional) – Multiplication factor to generate a temporally unique halo ID.

	Returns

	

	Return type

	None.

Notes

The default parameters are chosen to match the ASTRO3D Genesis trees as
produced by VELOCIraptor + Treefrog.

	
astro3D.genesis.utils.adjust_spec.adjust_hostHaloID(f_out, haloID_field, FirstHaloInFOFgroup_field, Snap_Keys, Snap_Nums, index_mult_factor)

	Adjusts the hostHaloID field in the output HDF5 file.

In the original trees, if a halo is the main background FoF halo, its value
of hostHaloID is set to -1. Under the LHaloTree specs, the property
correpsonding to this field (FirstHaloInFOFgroup) can never be -1.
Instead, halos in these instances should point to themselves.

	Parameters

	
	f_out (Open HDF5 file.) – The HDF5 trees we’re adjusting.

	haloID_field (String, optional) – Field name within the HDF5 file that corresponds to the unique halo ID.

	FirstHaloInFOFgroup_field (String, optional) – Field name within the HDF5 file that corresponds to
FirstHaloInFOFgroup in the LHaloTree structure.

	Snap_Keys (List of strings.) – Names of the snapshot keys within the passed keys.

	Snap_Nums (Dictionary of integers keyed by Snap_Keys.) – Snapshot number of each snapshot key.

	index_mult_factor (Integer, optional) – Multiplication factor to generate a temporally unique halo ID.

	Returns

	

	Return type

	None.

astro3D.genesis.utils.common module

astro3D.genesis.utils.convert_indices module

	
astro3D.genesis.utils.convert_indices.convert_indices(fname_in, fname_out, haloID_field='ID', forestID_field='ForestID', ID_fields=['Head', 'Tail', 'RootHead', 'RootTail', 'ID', 'hostHaloID'], index_mult_factor=1000000000000)

	Converts temporally unique tree IDs to ones that are forest-local as
required by the LHalo Trees format.

The data-structure of the Treefrog trees is assumed to be HDF5 File ->
Snapshots -> Halo Properties at each snapshot.

A new HDF5 file is saved out with the updated IDs.

Note

We require the input trees to be sorted via the forest ID
(forestID_field) and suggest to also sub-sort on hostHaloID and
mass. Sorting can be done using astro3D.genesis.utils.forest_sorter.

	Parameters

	
	fname_in, fname_out (String) – Path to the input HDF5 VELOCIraptor + treefrog trees and the path
where the LHalo correct trees will be saved.

	haloID_field (String, optional) – Field name within the HDF5 file that corresponds to the unique halo ID.

	forestID_field (String, optional) – Field name within the HDF5 file that corresponds to forest ID.

	ID_fields (List of strings, optional) – The HDF5 field names that correspond to properties that use halo IDs.
As the halo IDs are updated to match the required LHalo Tree format,
these must also be updated.

	index_mult_factor (Integer, optional) – Multiplication factor to generate a temporally unique halo ID.

	Returns

	

	Return type

	None.

Notes

The default parameters are chosen to match the ASTRO3D Genesis trees as
produced by VELOCIraptor + Treefrog.

astro3D.genesis.utils.forest_sorter module

Authors: Jacob Seiler, Manodeep Sinha

	
astro3D.genesis.utils.forest_sorter.forest_sorter(fname_in, fname_out, haloID_field='ID', sort_fields=['ForestID', 'hostHaloID', 'Mass_200mean'], sort_direction=[1, 1, -1], ID_fields=['Head', 'Tail', 'RootHead', 'RootTail', 'ID', 'hostHaloID'], index_mult_factor=1000000000000)

	Sorts and saves a HDF5 tree file on the specified sort fields. The IDs of
the halos are assume to use the index within the data file and hence will
be updated to reflect the sorted order.

	Parameters

	
	fname_in, fname_out (String) – Path to the input HDF5 trees and path to where the sorted trees will be
saved.

	haloID_field (String, optional) – Field name within the HDF5 file that corresponds to the unique halo ID.

	sort_fields (List of strings, optional) – The HDF5 field names that the sorting will be performed on. The entries
are ordered such that the first field will be the outer-most sort and
the last field will be the inner-most sort.

	sort_direction (List of integers, optional) – Specifies the direction in which the sorting will occur for each
sort_field entry. 1 corresponds to ascending, -1 to descending.

	ID_fields (List of strings, optional) – The HDF5 field names that correspond to properties that use halo IDs.
As the halo IDs are updated to reflect the new sort order, these fields
must also be updated.

	index_mult_factor (Integer, optional) – Multiplication factor to generate a temporally unique halo ID.

	Returns

	

	Return type

	None.

Notes

The default parameters are chosen to match the ASTRO3D Genesis trees as
produced by VELOCIraptor + Treefrog.

astro3D.genesis.utils.treefrog_to_lhalo module

Authors: Jacob Seiler, Manodeep Sinha

	
astro3D.genesis.utils.treefrog_to_lhalo.treefrog_to_lhalo(fname_in, fname_out, haloID_field='ID', forestID_field='ForestID', Nforests=None, write_binary_flag=1, debug=0)

	Takes the Treefrog trees that have had their IDs corrected to be in LHalo
format and saves them in LHalo binary format.

The data-structure of the Treefrog trees is assumed to be HDF5 File ->
Snapshots -> Halo Properties at each snapshot.

Note

We require the input trees to be sorted via the forest ID
(forestID_field) and suggest to also sub-sort on hostHaloID and mass.
Sorting can be done using astro3D.genesis.utils.forest_sorter.

We also require the input trees to have IDs that are LHalo compatible.
See astro3D.genesis.utils.convert_indices.

	Parameters

	
	fname_in, fname_out (String) – Path to the input HDF5 VELOCIraptor + treefrog trees and the path
where the LHalo binary file will be saved.

	haloID_field (String, optional) – Field name within the HDF5 file that corresponds to the unique halo ID.

	forestID_field (String, optional) – Field name within the HDF5 file that corresponds to forest ID.

	Nforests (Integer, optional) – The number of forests to be processed. If None is passed then all
forests are processed.

	write_binary_flag (Integer, optional) – Flag to decide whether to write to a binary or HDF5 file.
0: HDF5 file only.
1: Binary file only.
2: Both binary and HDF5 file.

	Returns

	

	Return type

	None.

Notes

The default parameters are chosen to match the ASTRO3D Genesis trees as
produced by VELOCIraptor + Treefrog.

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 astro3D	

 	
 	
 astro3D.genesis	

 	
 	
 astro3D.genesis.utils	

 	
 	
 astro3D.genesis.utils.adjust_spec	

 	
 	
 astro3D.genesis.utils.common	

 	
 	
 astro3D.genesis.utils.convert_indices	

 	
 	
 astro3D.genesis.utils.forest_sorter	

 	
 	
 astro3D.genesis.utils.treefrog_to_lhalo	

Index

 A
 | C
 | F
 | T

A

 	
 	adjust_hostHaloID() (in module astro3D.genesis.utils.adjust_spec)

 	adjust_spec() (in module astro3D.genesis.utils.adjust_spec)

 	astro3D (module)

 	astro3D.genesis (module)

 	astro3D.genesis.utils (module)

 	
 	astro3D.genesis.utils.adjust_spec (module)

 	astro3D.genesis.utils.common (module)

 	astro3D.genesis.utils.convert_indices (module)

 	astro3D.genesis.utils.forest_sorter (module)

 	astro3D.genesis.utils.treefrog_to_lhalo (module)

C

 	
 	convert_indices() (in module astro3D.genesis.utils.convert_indices)

F

 	
 	forest_sorter() (in module astro3D.genesis.utils.forest_sorter)

T

 	
 	treefrog_to_lhalo() (in module astro3D.genesis.utils.treefrog_to_lhalo)

Comprehensive API reference

	astro3D package
	Subpackages
	astro3D.genesis package
	Subpackages

 nav.xhtml

 Table of Contents

 		
 Welcome to astro3D’s documentation!

 		
 Utilities

 		
 adjust_spec

 		
 forest_sorter

 		
 Tests

 		
 convert_indices

 		
 treefrog_to_lhalo

 		
 astro3D package

 		
 Subpackages

 		
 astro3D.genesis package

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

